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Pattern selection in the generalized Swift-Hohenberg model
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The competition between patterns of different symmetries is studied for the generalized Swift-
Hohenberg model in the presence of a large quadratic coupling in one dimension (1D) and 2D. It is
shown that hexagons with different phase relations may coexist for some values of the control parameter.
Numerical experiments exhibiting the effects of linear spatial ramps of the control parameter on this
selection are presented. The analogy with recent patterns obtained experimentally in open chemical

reactors is also discussed.

PACS number(s): 47.54.+r, 82.40.Ck

I. INTRODUCTION

Symmetry-breaking instabilities giving rise to spatial
patterns in driven systems have been the focus of great
activity [1] in fields as diverse as hydrodynamics of sim-
ple fluids or liquid crystals, chemistry, and nonlinear op-
tics [2-4].

From a theoretical point of view the nonlinear partial
differential equations describing these systems cannot be
solved exactly for most realistic conditions. A qualitative
approach has therefore been developed based on simple
models, which nevertheless can capture various experi-
mental observations made in different systems. Such
models are then able to provide an understanding of the
basic underlying mechanisms. The need for such a meta-
phoric approach is particularly important in the chemical
context, where the systems of interest generally involve a
great number of species and for which the details of the
corresponding kinetic mechanisms are generally largely
unresolved.

In this framework the so-called generalized Swift-
Hohenberg (GSH) model [5,6] provides a useful tool to
analyze the competition between structures of hexagonal
symmetry and patterns periodic in one direction, ‘“rolls”
or “stripes” [7], as well as the dynamics of their topologi-
cal defects [8]. It takes the following form:

E?)—1:=ru-—[V2-|-qcz]2u-ﬁ-vuz—gu3 (g>0), (1)
where r is the bifurcation parameter. This equation has
been widely used for a qualitative description of convec-
tive structures induced by the Bénard-Marangoni insta-
bility or non-Boussinesq Bénard convection [7,9]. In the
latter case the quadratic term v is small since it is related
to the terms associated, for instance, with the weak tem-
perature dependence of the transport coefficients.

Such a model also proves useful to describe the Turing
structures [10] that can appear through diffusion driven
instabilities in chemical systems [11], and which have re-
cently been obtained experimentally with the chlorite-
iodide-malonic acid (CIMA) reaction in open gel reactors
[12,13]. In these systems the quadratic term v, which can
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be expressed in terms of the rate and diffusion constants,
is however not necessarily small.

Although further generalizations of the SH model have
recently been analyzed [14,15], the main purpose of this
paper is to present aspects of the bifurcation analysis of
the “simple” Eq. (1), when however v is not small but
nevertheless such that r, =¢2—v?/4g remains positive in
contrast to Ref. [9]. We show that this system exhibits a
surprisingly rich nonlinear phenomenology that had not
been made explicit previously, and that is due to the ex-
istence of reentrant hexagonal modes and localized struc-
tures.

The bifurcation diagrams are computed from the pat-
terns obtained by integrating Eq. (1) with either no flux
or mixed boundary conditions (periodic along one direc-
tion and no flux along the other in order to be able to in-
troduce some ramps of the control parameter). They are
discussed with the help of the relevant amplitude equa-
tions derived through the standard bifurcation analysis
techniques. Furthermore in the presence of a spatial
ramp of the control parameter r that mimics the feeding
of the chemical reactor through its boundaries, the com-
petition between these structures then gives rise to
scenarios that are qualitatively analogous to those ob-
served in open gel reactors.

II. THE MODEL: BASIC PROPERTIES

Let us briefly recall that Eq. (1) may be written in a
gradient form
Qu__ 8F
ot du ’

where Fis a Lyapunov functional

F=1 [dx{—ru®=2ou’+Lgu*+[(V+q2u P} ()

2

(2)

that decreases along any trajectory during the evolution
of the system:

2
oF ou
—=—|dx|— | =0, 4
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where x is the D-dimensional position vector. This gra-
dient property implies that only static attractors may ap-
pear, and its existence allows the relative stability of the
various states to be computed. Hence the absolute
minimum of F corresponds to the stable steady state,
whereas the relative minima point to metastability. All
this, however, does not preclude the onset of spatial dis-
order resulting from the multistability of states [9], as we
will discuss below.

The homogeneous steady states are given by the solu-
tions of

(r—ghu,+oul—gul=0. (5)

The reference state u, =0 undergoes a transcritical bifur-
cation at r =¢7, leading to new branches, u , , of uniform
solutions (Fig. 1):

ue = fo[v+ag(r—gH]' 2} . ®

2g

At the limit point B, r =r;, =q*—v?/4g, the stable (u )
and unstable (u_) branches annihilate. Bistability be-
tween uniform states ¥ =u,=0 and ¥ =u , occurs for
r, <r<qt

In modeling convective flows by the Swift-Hohenberg
models, u, corresponds to the conductive solution.
There, the control parameter » is usually considered to be
much smaller than g?. As v is then also taken to be zero
or small (Boussinesq or non-Boussinesq fluids, respective-
ly), the uniform states u, lie generally far from the
symmetry-breaking (convection) threshold » =0 and are
considered spurious.

On the contrary, in well-mixed open reactor condi-
tions, i.e., in the absence of spatial contributions, the
CIMA reaction can exhibit bistability between two uni-
form steady states, one reduced and the other oxidized
[16]. Equation (1) thus provides a simple model to study
the onset of patterned fronts between two steady states in
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~
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FIG. 1. Bifurcation diagram exhibiting the stability of the
uniform states for g, =0.5, g =1, v =0.41. The same values of
the parameters are used throughout the paper. The plain,
dashed, and circled lines, respectively, correspond to linearly
stable steady states, steady states already unstable to uniform
perturbations, and those unstable with respect to the space
dependent perturbations because of the presence of the O, 4,
and C symmetry-breaking bifurcations.
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asymmetrically fed unstirred reactors, as its steady solu-
tions can be destabilized by inhomogeneous perturbations
of wave vectors gq,.

The model, Eq. (1), indeed exhibits three pattern form-
ing instabilities at points O (r =0), 4 (r=ry;), and C
(r =rp,) that would be related to Turing instabilities in
the chemical context. Figure 1 represents the uniform
steady states (ug,# . ,u_) and their symmetry-breaking
instabilities that can easily be computed by testing the
stability of the uniform branches to space dependant per-
turbations. The values of the parameters g,.=0.5,
v =0.41, and g =1 used in this paper are chosen in order
to dispose of a high value of the quadratic coupling v,
while avoiding both the interaction of the symmetry-
breaking bifurcation at 4 (r =ry;) with the saddle-node
bifurcation at B (» =r; ), or the situation where the limit
point B lies in the region r <0 that has partly been ana-
lyzed elsewhere and that would occur for still larger
values of v [9]. We will now study, analytically and nu-
merically, the various spatial branches emerging from
these points and show that they lead to a complex bifur-
cation diagram already for 1D systems.

III. 1D SYSTEM: SUBCRITICAL
TRANSITIONS TO PERIODIC STRUCTURES

In the vicinity of each of the above mentioned
symmetry-breaking instability points, the GSH model dy-
namics may be described in terms of an equation for the
complex amplitude A of the pattern that plays the role of
an order parameter [17]. We will here restrict our discus-
sion of the pattern selection to the competition between
solutions of different symmetry. Spatial modulations of
the amplitudes will thus be neglected.

Near point O (r =0), at the lowest order, one finds

dA

o rA—eslalPa, M
with
38v?
83=3g— (8)
9g¢

When the quadratic coupling coefficient v is small, g5 is
positive, and Eq. (7) describes the standard supercritical
bifurcation at » =0 of a 1D periodic structure: stripes.

On the other hand, when v becomes sufficiently
large—and this is often the case for chemical systems, as
we have already stated—g; may become negative and
the amplitude can no longer be saturated by the cubic
term. The value of v we have chosen corresponds to such
a case. Higher order contributions must then be taken
into account. Up to fifth order, near r =0, the amplitude
equation then takes the form [18]

«%%=wA—gﬂAPA—ggAHA, 9
with
2 2 2.2
g =3g— 38v°  326rv-  2918r°w (10)

9¢2 81q8 729¢ 2
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FIG. 2. Bifurcation diagram in one space dimension obtained
from the numerical integration of Eq. (1). The amplitude u of
the uniform u . state, and #, the peak-to-peak amplitude of the
striped structures, are represented.
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Since g3 <0 and g5>0 for the values of the parameters
chosen in our simulations, the resulting stripe structure
indeed appears subcritically in the vicinity of r =0
through an inverted pitchfork bifurcation. The subcriti-
cal nature of the bifurcation may be verified through nu-
merical integration of Eq. (1).

Numerical simulations show (Fig. 2) that this branch of
stripes develops with increasing amplitude until r =r,.
At higher values of r only the uniform u ., states remain
stable. Because no other structures are revealed numeri-
cally when O <r <rp,, it is reasonable to assume that at r,
the branches of periodic structures annihilate with the
unstable branches emanating from subcritical structure
forming bifurcations at r =ry; or ry, on u,. This may
also be checked by deriving the amplitude equations near
r=rp OF Fpy.

The system thus exhibits two successive regions of bi-
stability:

(i) Between the stripes and the reference state (4 =0)
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FIG. 3. Pinned (immobile) 1D front separating a striped 1D
structure from the u ; uniform steady state that coexist in space
for r =0.1.
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FIG. 4. Evolution in time of the position of a 1D front that
was pinned at time ¢ =0 near the center of the system (position
300) in the pinning band for r =0.1. The control parameter is
then lowered, respectively, to r=0.035, r=0.028, and
r =0.015, values that are increasingly distant from the lower
boundary (r =0.0375) of the pinning region. The structure in-
vades the domain of the u, uniform state with a nonuniform
velocity. The movement proceeds by “jumps” of one wave-
length of the structure. The time between each jump increases,
while the mean velocity of the front decreases as the bifurcation
parameter grows towards the pinning band edge. At this edge
the time between jumps diverges so that pinning occurs.
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FIG. 5. 1D localized structures between the uniform u

state and 1D stripes obtained numerically from Eq. (1) at
r =0.1. (a) simple core; (b) multiple wavelengths core.
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for —g3/4gs <r <0, and (ii) between the stripes and the
states uy for ry , <r <r,.

Unsurprisingly, in these regions of bistability, stable
stationary localized structures have been found numeri-
cally. The simplest correspond to fronts (kinks) that in-
terconnect in space the two bistable states. An example
of such a front, in the second region defined above, is
shown in Fig. 3. Because the GSH model has a gradient
structure, the stabilizing mechanism for this coherent
structure is here provided by the pinning of the front by
the periodic pattern [19]. Such nonadiabatic effects, as
they have been coined, that cannot be accounted for by
the amplitude equations [Eq. (8) or (10)], have also re-
cently been observed [20] in a realistic chemical model.
For the parameters considered, the pinning force appears
to be large, as the pinning band covers nearly the whole
domain of bistability between the u . uniform states and
the stripes. As a consequence, propagating fronts be-
tween these two states can only be observed in a very nar-
row region near the stability limits ry; (or ry,) and ry.
Outside, but near the band edge, the front exhibits the
stepwise motion, characterizing the nearby existence of
pinning, with the typical critical slowing down of the
mean velocity of the front as one comes close to the edges
(Fig. 4).

Such fronts may then serve, and this is corroborated by

our simulations, as building blocks for the construction of
|

d4,
dt
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localized Turing structures embedded in an otherwise
uniform background where the system is in a uniform
state. The pinning effects are then also responsible for
the observed multistability between localized states with
different numbers of wavelengths in the core (Fig. 5).

For the values of the parameters used in the present
simulations, the droplets present spatial oscillating tails.
This gives rise to an effective potential between localized
states that is a periodic function of the distance between
them. As in condensed matter physics, such a potential
provides a key ingredient for the onset of frozen-in disor-
der, even in gradient systems [21].

IV. 2D SYSTEM: PERIODIC
AND LOCALIZED STRUCTURES

In 2D, besides the stripes, we also have to take into ac-
count structures built on a triad of active modes charac-
terized by three pairs of wave vectors that are such that
q,-qj=q62c03277'/3 (i,j=1,2,3). These generate, as is
well known, patterns with hexagonal symmetry.

When deriving the amplitude equations for three reso-
nant pairs of active modes, we notice that, for our choice
of parameters, the cubic nonlinearity does not saturate
the instability. Therefore, as previously done for the
stripes, we have to include higher order contributions.
Using the same techniques [17], we obtain

=rA;+20A45 A% —g3| A 1PA, —h3[| 4,17+ 451714, —20" A5 A3 | A |P—v' A3 AF[| A, 1P+ ] 45]%]

_U'A%A2A3_85|A1|4A1—h5[|A2|4+|A3|4]A1_hls[|A2|2+|A3|2]|A1|2A1

—hy[14,1% 451214, —wAr 432 4%

and permutations thereof for 4, and A,. The various
coefficients are given by

_ 502 1Tv% 65022
hy=6g——F ==~~~ >
qc 4q, 16g.
b= — 5g° + 931v2g , 39337v*
ST 2¢% ' 36¢F  1458¢12
qC q(_‘ q(‘
nt = 5g2+613v2g 187633v*
ST g% U 108¢% | 2916¢12
qc qc qc
(13)
B = — 48g% | 55v%g + 3850*
5 4 2 8 6 2
q. 4. q.
L 24v3—1385rvg  13rv?
3g2 108¢2 16292 °
2 2 4
w=— 99g4 + 20v8g S8 i
2q, 9gq. 729,

whereas g, and g5 have already been given in Egs. (10)
and (11). If the complex amplitudes are written in terms
of a modulus and a phase as 4; =R,-el i, then the sum of
the phases, ¢=33_,4,, satisfies

(12)
[
%;ﬁ = Asing+A,sin2é , (14)
with
A=—6Rv+9R%’', A,=3R*w, (15)

where we have only considered the situation with
R,=R,=R;=R, in view of the symmetric character of
the patterns obtained numerically.

On the other hand the amplitude R obeys

‘;—I: =rR +2vR *cos¢p — (g, +2h;)R>— %R dcose

—[(gs+2hs+2h5+hy)+wcos2]R7 . (16)

From (14), the stationary values of the total phase are
¢=0: one has HO hexagons, where the maxima (minima)
form a triangular lattice if v >0 (v <0); ¢=m: one has
H 1 hexagons, where the maxima (minima) form a honey-
comb lattice if v >0 (v <0); p=¢*=cos™ (—A,/21,).
The linear stability with respect to uniform total phase
perturbation 8¢ is determined by the eigenvalues

2A,+A, for ¢=0,
2A,—A,; for ¢=m,
(2A,+A (A —2A,) /2, for ¢=¢* .
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FIG. 6. Eigenvalues for the linear stability of the phase of the
structures of hexagonal symmetry. The region of bistability of
Hm and HO hexagons, where both eigenvalues are negative, is
clearly visible.

The two first eigenvalues are plotted in Fig. 6 for the
values of the parameters used in the paper. This diagram
shows that there exists a region where the HO and Hmw
are both stable with respect to the uniform phase pertur-
bations. Using (16) it may in turn be shown that, in their
region of coexistence, the amplitudes of both hexagonal
patterns are also stable to uniform perturbations for the
chosen values of the parameters. The solution ¢=¢* is
unstable with respect to total phase perturbations in its
domain of existence.

Thus, for v >0 (as considered here), we expect, from
the amplitude equation analysis, that the HO are the
stable patterns for low values of r until they exchange
their stability with the H for larger values of the bifur-
cation parameter after going through a region where both
types of hexagons may coexist.

While very heavy, the study of the stability of the pat-
terns of hexagonal symmetry with respect to the forma-
tion of stripes leads to the standard result of the hexago-
nal stripe competition although the stripes here appear
subcritically. The only difference is that somewhere in
the hexagonal-stripe coexistence region one switches
from one type of hexagon to the other. However, as we
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<
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0 0.05 0.1 0.15 0.2 0.25 r

FIG. 7. Bifurcation diagram in two space dimensions ob-
tained from the numerical integration of Eq. (1). The represen-
tation is that of Fig. 2.
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already know, for still higher values of r, the uniform u .
states remain the only stable states. Amplitude equations
for the other two symmetry-breaking bifurcation points
at A and C have not been derived, nor the connection of
the branches emanating from these points with those

FIG. 8. Structures for u in Eq. (1). The integration was per-
formed on a square grid of size 64X 64 with mixed (see text)
boundary conditions. The gray scale corresponds to the con-
centration between the absolute minimum (black) and maximum
(white). (a) HO hexagons for r=—0.02; (b) Stripes for
r =—0.01; (c) Hm hexagons for » =0.1.
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studied before.

These results are corroborated by our numerical simu-
lations. In the 2D numerical bifurcation diagram (Fig. 7)
the first structure to appear subcritically is indeed of the
HO type [Fig. 8(A)]. On increasing r, the HO structure is
followed also subcritically (at least for v =0.41) by
stripes [Fig. 8(B)]. In the subcritical region (r <0) the
system thus exhibits a region of tristability among HO,
stripes, and the trivial homogeneous steady state ( A =0).
At still higher values of » (> 0) we observe the predicted
reentrant phase of hexagonal symmetry of the Hw type
[Fig. 8(C)], as was already obtained in various chemical
models [22-24] as well as in experiments [25]. Here,
however, as we have discussed, the two kinds of hexago-
nal patterns may coexist for set of values of r leading to a
high multiplicity of solutions as the stripes, and the uni-
form u . states are also stable for this set of values of the
control parameter. The coexistence of the two types of
hexagonal patterns seem to have recently been observed
experimentally [26] in Rayleigh-Bénard convection in
SF¢ near the liquid-gas critical point [27]. As r is in-
creased further, the H7 become unstable with respect to
the formation of stripes or the uniform u . states. In the
end, the stripes also yield to the uniform u ., states, which
are the only states remaining stable for high ». We have
thus obtained qualitative agreement between analytical
and numerical results. For other values of the parame-
ters, v =0.7 and g, =1, we have also obtained stable pat-
terns of square symmetry (see also [28]). Their existence
for the parameters used in this paper has not yet been es-
tablished.

Associated with these phenomena of multistability one
observes a large variety of 2D localized structures, some
of which are displayed in Fig. 9. Here also the stability
of these states heavily relies on domain wall pinning. The

FIG. 9. Localized structures obtained numerically from Eq.
(1) at r =0.1, except (b). (a) Stable stationary front between Hw
hexagons and stripes; (b) stable stationary front between Hr
and HO at r =0.035; (c) Hm hexagonal droplet embedded in the
uniform u , state; (d) “spotty” state.
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shape of these structures follows from the fact that this
pinning is more important when the domain boundary is
nearly perpendicular to the wave vectors characterizing
the patterns [29].

Our 2D numerical simulations have also produced in-
homogeneous states [Fig. 9(C)] that consist of beads of
low amplitude embedded in the uniform u , state. As the
control parameter is decreased the number of spots
grows, finally giving rise to the full hexagonal structure
(Hr). This spatial disorder has been discussed for large v
conditions [28]. Similar inhomogeneous “spotty” states
have also been obtained recently in numerical simulations
[30] of a variant of the Gray-Scott model [31]. In the
latter case, however, the state exhibits a time dependence
that is of course absent in our gradient model.

V. RAMPED STRUCTURES

In the case of the chemical structures experimentally
obtained in the CIMA reaction the system is kept under
control by feeds through the boundaries, and this creates
concentration gradients in the system. To study the

(A)

(B)

©)

FIG. 10. Sequence of structures in the presence of a linear
ramp of the control parameter » =y(2x — 1), as the slope y is
progressively decreased. (a) ¥ =0.6; (b) y =0.2; (c) y=0.1.
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effect of such concentration profiles on the pattern selec-
tion problem presented above for uniform conditions, we
have solved numerically Eq. (1) in the presence of a linear
ramp of the bifurcation parameter that we now write as
r=y(2x —1).

When the ramp 7 is sufficiently steep a single sharp
front develops perpendicularly to the gradient. This
trivial state corresponds to a rapid switch between the
state ¥ =0 and the uniform u . state [Fig. 10(A)]. Such a
switch could not be present in the previous studies of the
effects of the feeding ramps on the chemical pattern selec-
tion problem [32], as no bistability between homogeneous
steady states existed. On decreasing the ramp two alter-
nating dark and clear stripes develop also parallel to the
need boundary [Fig. 10(B)]. A further decrease results in
the emergence of an HO pattern that finally breaks the
symmetry of the feeding and that spatially coexists with
the stripes [Fig. 10(C)]. At this stage we have an unfold-
ing in space of the bifurcation diagram discussed in the
preceding section (Fig. 7). Each pattern develops in the
region of space where the local value of the bifurcation
parameter allows it to be stable. The other hexagonal
structure (H ) does not occur, as the value of the ramp
has suppressed the stability domain of this structure. A
similar sequence of structures is observed in the experi-
ments performed [33] in the gel strip reactor when the
feeding concentrations of the species along the two boun-
daries are progressively varied.
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VI. CONCLUSIONS

We have shown that, despite its simplicity, the general-
ized Swift-Hohenberg model exhibits a very rich variety
of behaviors that had not been documented before, when
the quadratic coupling v is large. Some of these are simi-
lar to the observations in experiments in spatial open
chemical systems or in numerical studies of more realistic
but more complex models. Such are the reentrant hexag-
onal patterns and their pinning. A feature of this model
is that both types of hexagons are able to coexist for a
band of values of the control parameter, as seems to have
been observed in non-Boussinesq Rayleigh-Bénard exper-
iments. Because of its gradient structure, the model al-
lows for the study of the role of such pinning effects in
the origin of the localized structures in absence of non-
variational effects [34]. Finally, it may also prove a good
candidate for the further studies of the nucleation kinet-
ics of diffusion-driven structures, as well as of the pattern
selection problem of ramped 3D Turing structures [35].
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FIG. 10. Sequence of structures in the presence of a linear
ramp of the control parameter r =y(2x —1), as the slope y is
progressively decreased. (a) ¥ =0.6; (b) ¥ =0.2; (c) y =0.1.
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FIG. 8. Structures for u in Eq. (1). The integration was per-
formed on a square grid of size 64X 64 with mixed (see text)
boundary conditions. The gray scale corresponds to the con-
centration between the absolute minimum (black) and maximum
(white). (a) HO hexagons for r=—0.02; (b) Stripes for
r=—0.01; (c) Hm hexagons for r =0.1.
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FIG. 9. Localized structures obtained numerically from Eq.
(1) at » =0.1, except (b). (a) Stable stationary front between Hmr
hexagons and stripes; (b) stable stationary front between Hw
and HO at r =0.035; (c) Hm hexagonal droplet embedded in the
uniform u , state; (d) “spotty” state.



